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Class Outline - Morning

« OVERFLOW 2.2 capabillities
e CFD nomenclature overview
 Running in OVERFLOW mode

 NAMELIST Input
— Inviscid fluxes
— Implicit solvers
— Boundary conditions
— Species equations
— Turbulence models
— Unsteady flow outputs
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Capabilities

« Implicit time marching solution algorithms
* Node-centered structured mesh
« OVERSET

 Gas models
— Perfect gas
— Variable gamma (currently not correct)
— Low Mach number preconditioning (not all flux algorithms)
— Multi-species (non-reacting)
 Moving body
— Grid assembly (DCF)
— Prescribed motion (GMP)
— 6dof (GMP or internal or user specified)
— Force integration (FOMOCO or USURP)
— Collision modeling
— Automatic off-body Cartesian grid generation (DCF)
— Off-body grid refinement based on body motion or flow field
Parallel performance enhancement
— Parallel with MPI and/or OPENMP
— Auto grid decomposition for load balance
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Capabilities (cont.)

e Turbulence models

— Baldwin-Lomax

— Baldwin-Barth

— Spalart-Allmaras (SA-DES, SA-DDES, SARC,ASARC)

— k-

— SST (SST-DES, SST-DDES, SST-MS, SSTRC,ASSTRC)
e Boundary conditions

— Slip and no-slip wall

— Constant temperature wall

— Topology bc’s (overlap, slit, polar axis)

— Characteristic inflow/outflow

— Nozzle inflow

— Actuator Disk

— Mass flow

— Wall functions

— And much, much more
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Convergence Acceleration Methods

 Newton subiteration

« Dual time-stepping subiteration
e Multigrid

e Grid sequencing

e Local time step

e dg Limiter
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CFD Nomenclature Overview



Navier-Stokes Equations

Differential form:
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Implicit Discrete Unfactored Form
(1st or 2nd Order Time):
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LHS Approximations

ADI Factorization (block tridiagonal matrix system):

|+ﬂa§A 1+l 58 I+£5§C
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Diagonalized Scheme (scalar pentadiagonal matrix scheme):

Xg{l +1i—tea§A4x; XU[I +ﬁ—tea,71\n}x,;l Xg[l +1i—t85§1\§}x;1 AQ™ =
[%Aq” —ﬁ—te RHS”} + Error
X. = Eigenvector of A A, = Eigenvalues of A
Factorization Error:
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LHS Approximation Summary

 Unfactored SSOR

— More memory (store entire Jacobian matrix)

— Relaxation method to invert matrix
» Slower
 Most stable

— No factorization error

« ADI block tridiagonal

— Fast (fits well in cache)

— Small memory (solve 1 direction at a time)

— Factorization error can cause instability for large time steps
e ADI diagonalized

— Extremely fast

— Smallest memory (solve 1 direction at a time)

— Least stable

— Factorization error can cause instability for large time steps

9/20/2010
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Running in OVERFLOW Mode



Overset Methodology

External grid assembly using PEGASUS 5

Internal grid assembly and Cartesian blocks generated using DCF
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Required Input Files

e Single grid solution
— grid.in plot3d grid file (single or multi grid format)
— over.namelist namelist input file
— Optional initial solution file g.restart
— Optional force and moment files mixsur.fmp,
grid.ibi, and grid.ptv (fomoco) or
panels_weight.dat (usurp)

e Multiple grid solution

— grid.in plot3d grid file (multi grid format)

— over.namelist namelist input file

— INTOUT or XINTOUT overset communication file

— Optional initial solution file g.restart

— Optional force and moment files mixsur.fmp,
grid.ibi, and grid.ptv (fomoco) or
panels_weight.dat (usurp)



Restart and Solution Files

 Normally solution written to g.save plot3d format
file
— g.save file Is overwritten with latest output

e Option to write solution to q.<istep> plot3d

format files
« Solution file for restart is named g.restart
— Restart file now contains information needed
for true 2"d order time restart if running 2nd
order time
— Restart file g.restart is not automatically

generated on restart




Initializing Solution Files

e Code will initialize to free stream Input conditions
In NAMELIST (initial g.restart not required)

e Users may write their on g.restart file

e Code will scale restart file when NAMELIST
Input values are different from those in the
g.restart file (M., a, B)
— Allows start from existing solution file
— Allows high speed solutions to be started

from lower speed Initial file



Running the Code

Serial code

— .Joverflow

MPI code

— mpirun —np <ncpus> ./overflowmpi

Serial run script (Input file basename.inp or

basename.n.inp)

— overrun basename n

MPI run script

— overrunmpi —np <ncpus> -machinefile <hostfile>
basename n

Run scripts perform the following tasks

— Move *.save output files to *.restart input files

— Highlight warnings and errors

— Creates a log file with time/date, machine name,
executable name, and NAMELIST input file name

— Concatenates output history files upon completion



Output Files

e Solution files

g.save or gq.<istep>
g.avg time averaged solution file

« History files (view with overplot)

9/20/2010

resid.out - residual history file

rpmin.out — min p, min p, y, number of reverse flow points,
number of supersonic points, and max p,

turb.out - residual history file for turbulence equations
species.out - residual history file for species equations
fomoco.out — force and moment history file

timers.out — timing information for run

18
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Standard Out File

Compile information:

OVERFLOW/OVERFLOW-D -- OVERLAPPED GRID FLOW SOLVER
( MPI VERSION )
VERSION 2.1s 8 July 2008

Compiled for SINGLE PRECISION

Compile time: Tue Sep 16 14:07:40 CDT 2008

Code was compiled with the following:

FO0 = mpif77
FOOFLAGS= -Mnoopenmp -fastsse -Ktrap=fp
CC = mpicc

CFLAGS = -fastsse -Ktrap=fp
CPP  =/lib/cpp -traditional
CPPFLAGS= -DUSE_MPI -DNOCPU_TIME

Current time: Sep 19 01:33:54 2008
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Standard Out File (cont.)

NAMELIST Input Summary with checks:

** ASSUMING THIS IS AN OVERFLOW-D RUN.

THIS IS A PARALLEL RUN WITH 16 GROUPS.

GLOBAL PARAMETERS ($GLOBAL)
USE grdwghts.dat FOR LOAD BALANCING? (GRDWTS) =F
MAXIMUM GRID SIZE (MAX_GRID_SIZE) = 0
RUNNING CDISC INVERSE DESIGN? (CDISC)=F
SUPPRESS WRITING g.bomb FILE? (NOBOMB) = F
CONSERVE MEMORY? (CONSERVE_MEM) = F
DEBUG OPTION (0-3) (DEBUG )= 0
NUMBER OF STEPS (NSTEPS) = 12000
READ RESTART FILE? (RESTRT) =T
SAVE RESTART FILE EVERY (NSAVE ) 50 STEPS
2ND-ORDER Q RESTART OPTION  (SAVE_HIORDER) = 2
START Q AVERAGING AT STEP (ISTART_QAVG) = 2300
COMPUTE FORCE/MOMENT COEFS EVERY  (NFOMO) 10 STEPS
TURBULENCE MODEL TYPE (NQT) = 205
NUMBER OF SPECIES (NQC) = 0
USE MULTIGRID? (MULTIG) = F
USE FULL MULTIGRID? (FMG) =F

NO. OF GRID LEVELS (IF MULTIG=.T.) (NGLVL) = 3
NO. OF FMG CYCLES (IF FMG=.T)) (FMGCYC)= 0 0




Standard Out File (cont.)

Grid Summary with checks:

GRID SIZE FOR GRID  1:

NUMBER OF POINTSINJ (JD )= 201
K (KD )= 111
L (LD )= 51

CHECKING TIME STEP SPECIFICATION FOR GRID  1:

RUNNING TIME-ACCURATE WITH NEWTON SUBITERATIONS
WITH DTPHYS (BASED ON V_REF) = 0.20000
(BASED ON C_INF) = 0.21053

CHECKING BOUNDARY CONDITIONS FOR GRID  1:

1) BOUNDARY CONDITION TYPE# 1 DIRECTION 3

INVISCID ADIABATIC SOLID WALL (PRESSURE EXTRAPOLATION)
DIR=3 J-RANGE= 1 10 K-RANGE= 1 111 L-RANGE= 1 1
2) BOUNDARY CONDITION TYPE# 5 DIRECTION 3

VISCOUS ADIABATIC SOLID WALL (PRESSURE EXTRAPOLATION)
DIR=3 J-RANGE= 11 41 K-RANGE= 1 111 L-RANGE= 1 1
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Standard Out File (cont.)

Grid Splitting Summary:

NEAR-BODY/OFF-BODY GRID LEVEL SUMMARY:

Level #Grids  First Last

Target (weighted) near-body grid size from grouping:

Checking near-body grids...

Original number of near-body grids: 2
Splittinggrid l1atJ= 101
Splittinggrid l1atK= 56
Splittinggrid l1atJ= 52
Splittinggrid latK= 30
Splittinggrid latJ= 28
Splittinggrid 2atJ= 61
Splittinggrid 2atL= 41
Splittinggrid 2atJ= 32
Splittinggrid 2atK= 26
Splittinggrid 3 atK= 56

51179
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Standard Out File (cont.)

Load Balance Summary by Groups:

Load balance will be based on grid size.
Summary of work distribution for 16 groups:

Group Kpts %load Grid list
151 100 20 13 11
151 100 35 12 2
151 100 32 3 8
151 100 37 16 22
151 100 43 17 26
151 100 46 19 39
151 100 45 36 24
151 100 48 18 9
150 100 1 34 47
150 100 29 33 40
150 100 28 7 41
12 150 100 5 4 38
13 150 100 42 21 27
14 150 100 30 44 23
15 150 100 31 15 10
16 150 100 6 14 25

PEBoo~v~ouarwnpk

Predicted parallel efficiency is 100%,

based on a maximum of 151K grid points per group
compared to an average of 150K points (weighted)

Estimated parallel speedup is 16.0
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Standard Out File (cont.)

Residual Summary:

FORGRID 1 ATSTEP 12030 L2NORM = 0.80239815E-05
FLOW SOLVER/TURB MODEL/SPECIES CONVERGENCE RATES:
0.9995 1.0214 0.0000
FORGRID 2 AT STEP 12030 L2NORM = 0.92307528E-05
FLOW SOLVER/TURB MODEL/SPECIES CONVERGENCE RATES:
1.0041 0.9737 0.0000
FORGRID 1 AT STEP 12040 L2NORM = 0.76590641E-05
FLOW SOLVER/TURB MODEL/SPECIES CONVERGENCE RATES:
0.9954 1.0133 0.0000
FORGRID 2 AT STEP 12040 L2NORM = 0.91043430E-05
FLOW SOLVER/TURB MODEL/SPECIES CONVERGENCE RATES:
0.9986 1.0114 0.0000
FORGRID 1 ATSTEP 12050 L2NORM = 0.78810453E-05
FLOW SOLVER/TURB MODEL/SPECIES CONVERGENCE RATES:
1.0029 0.9666 0.0000
FORGRID 2 AT STEP 12050 L2NORM = 0.85000529E-05
FLOW SOLVER/TURB MODEL/SPECIES CONVERGENCE RATES:
0.9932 1.0180 0.0000
Wrote 2nd-order restart file -- g.save
Elapsed simulation time (based on V_ref): 0.2410016E+04
Wrote restart file -- g.avg
Elapsed simulation time (based on V_ref): 0.2410016E+04
g.avg data collected over 9751 steps




Standard Out File (cont.)

Timer Summary on Completion of Run:

N TIMER % TIME

1 TOTAL 100.00  1.8575E+05
2 OVERGL 0.00 2.4827E-03
3 OVERSZ 0.01 1.0730E+01
4 OVERST 0.00 3.2468E+00
5 OVERFL 99.99 1.8573E+05
6 OVERDO 0.00 1.4612E+00
7 OTHER 0.00 7.1377E-06

8 test 0.00 0.0000E+00

9 test 0.00 0.0000E+00

N TIMER % TIME/STEP MAX/STEP

5 OVERFL 100.00 1.5478E+01 1.5478E+01

11 CBCXCH 8.45  1.3080E+00 1.4018E+00

12 FLOW_SOLVE 87.85 1.3597E+01 1.3706E+01
13 FOMOCO 0.00 0.0000E+00 0.0000E+00
14 FLOW_ldle 2.08 3.2176E-01 4.7814E-01

15 SAVE 142 2.1947E-01 2.5384E-01

16 SIXDOF 0.00 0.0000E+00 0.0000E+00
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Standard Out File (cont.)

Group Timing Summary on Completion of Job:

GROUP TIMING SUMMARY (Time each group spent in OVERFL)
(*) Flow Solver, (/) Chimera BC, (a) Adapt, (D) DCFCRT, (s) Grid & Q save

0 25 50 75 100
G rou p | 1 |*****7!(**********!k**'k*******l**********l*******////S 98%
G rou p 2 |********************************************//// 98%
G rou p 3 |*******************************************//// 97%
G rou p 4 |*******************************************//// 97%
G rou p 5 |*******************************************////S 97%
G rou p 6 |*******************************************//// 97%
G rou p 7 |********************************************//// 97%
G rou p 8 |*******************************************//// 98%
G rou p 9 |********************************************//// 98%

G rou p 10 |********************************************//// 98%
G rou p 11 |********************************************//// 9 8%
G rou p 12 |********************************************//// 99%
G rou p 13 |********************************************//// 98%
G rou p 14 | ********************************************//// 99%
G rou p 15 |********************************************//// 99%

G rou p 16 |********************************************//// 99%

Overall Measured Parallel Efficiency: 97.9%

Current time: Sep 21 05:09:40 2008




Debug Options

e Turbulence model diagnostics (DEBUG=1)
— Baldwin Lomax q.turb file

Q Value Q1 Q2 Q3 Q4 Q5
(J,K,LS, ) Frax y* || Ly -
J,K,L, ) F(y) y || . Fax lOCation
— Spalart Allmaras g.turb file
Q Value Q1 Q2 Q3 Q4 Q5
(J,K,LS, ) f1 y* || . Turbulence index
J,K,L,) f1 y || . Transition factor
— SST q.turb file
Q Value Q1 Q2 Q3 Q4 Q5
J,K.LS,) ® y* F, 14 k
(J.K,L,) ® y F, 14 k
* Time step g.time diagnostics file (DEB UG=2)
Q Value Q1 Q2 Q3 Q4 Q5
(J.K,L,) At CFL, CFL, CFL  CFlL,
» Residual g.resid diagnostics file (DEBUG=3)
Q Value Q1 Q2 Q3 Q4 Q5
(J,K,L, ) lo1 Fo2 ro3 Fog Fos

9/20/2010 27
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NAMELIST Input

&GLOBAL /
&FLOINP /
&VARGAM /
&OMIGLIB /
&DCFGLIB /
&GBRICK /
&BRKINP /
&GROUPS /
&XRINFO /

&SIXINP /

Color Codes:

Required once per run.

Required once per run for OVERFLOW-D
mode. May be omitted if not using bricks
and DCF.

Required for every grid for moving body
runs using internal 6DOF. May be omitted
for static grid cases, GMP, or prescribed
motion problems.

9/20/2010
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NAMELIST Inputs

NAMELIST must follow standard format
specifications

— Old format $NAME $END

— New format &NAME /

All NAMELIST values have defaults

Input values can be inherited from the
previous grid

Order of grids in NAMELIST must
correspond to order of grids in grid.in!!!

30
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Namelist Input for Euler 2D Wing
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Inheriting Defaults in Namelist

Gridl sets Grid3 sets
IRHS=5 IRHS=4

Grid2 uses Grid4 uses
IRHS=5 IRHS=4
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Inviscid Flux Algorithms



9/20/2010

RHS Options

Central Difference (2" — 6")(IRHS=0)
Symmetric Yee (2"9)(IRHS=2)

Upwind AUSM* (31 — 5th) (IRHS=3)
Upwind Roe (3" — 51) (IRHS=4)
Upwind HLLC (3" — 5 (IRHS=5)
Upwind HLLE++ (39 — 51) (IRHS=6)

Low Mach preconditioning for 2" order
central, HLLC, and Roe

34



Central Difference Scheme (2"9)

e Smoothing required because of odd-even
decoupling
— 4% order smoothing away from shocks (DI1S4)
— 2"d order smoothing near shocks (DIS2)

e Smoothing options:
— F3D dissipation scheme (IDISS=1)
— ARC3D dissipation scheme (IDISS=2)
— TLNS3D dissipation scheme (IDISS=3)

— Matrix dissipation scheme (IDISS=4)

&METPRM
IRHS =0, IDISS=3,

/
&SMOACU

DI1S2 = 2.0, DI1S4 = 0.04, FSO = 2.0,
/




Roe Scheme

Up to 5™ order upwind in space (FSO)

Flux limiter options:

— Koren (ILIMIT=1)

— Minmod (ILIMIT=2)

— Van Albada (ILIMIT=3)
— WENO

Limiter fix for carbuncles and strong shocks
(DELTA)

Preconditioned option

&METPRM
IRHS =4,

/
&SMOACU
DELTA=1.0, FSO = 3.0,

/




HLLC Scheme

Up to 5™ order upwind in space (FSO)

Flux limiter options:

— Koren (ILIMIT=1)

— Minmod (ILIMIT=2)

— Van Albada (ILIMIT=3)
— WENO

Limiter fix for strong shocks (DELTA)
Preconditioned option

&METPRM

IRHS =5, ILIMIT =1,
/
&SMOACU

DELTA=1.0, FSO = 3.0,

/




HLLE++ Scheme

« Up to 5 order upwind in space (FSO)
o Flux limiter options:

— Koren (ILIMIT=1)

— Minmod (ILIMIT=2)

— Van Albada (ILIMIT=3)

— WENO

« Limiter fix for strong shocks (DELTA)

&METPRM

IRHS =6, ILIMIT =1,
/
&SMOACU

DELTA=1.0, FSO = 3.0,
/
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High Order Upwind Schemes

5t order upwind in space (FS0O=5.0)
Based on WENO
Use with AUSM, Roe, HLLC, or HLLE++

Flux limiter options:
— WENO (ILIMIT = anything but 4)
— Mapped WENO (ILIMIT = 4)

Limiter fix for strong shocks (DELTA)

Requires triple fringe interpolation boundaries

&METPRM
IRHS =5, ILIMIT =4,

/
&SMOACU

DELTA=1.0, FSO = 5.0,
/




High Order Central Schemes

e 4t or 6 order in space
e Use smoothing or filtering

e Smoothing controlled using DIS2 or DIS4
e Requires triple fringe interpolation boundaries

FSO = 2* 2"d order central with 4/2 dissipation
FSO = 3* 4t order central with 4/2 dissipation
FSO =4 4t order central with 6/2 dissipation
FSO = 5* 6" order central with 6/2 dissipation
FSO =6 6" order central with 8/2 dissipation
Smoothing: Filtering:
&METPRM &METPRM
IRHS =0,/ IRHS =0,/
&SMOACU &SMOACU
DIS2 = 0.0, DIS4 = 0.005, DIS2 = 0.0, DIS4 = 0.005,
FSO =5.0, SMOO =0, / FSO =6.0, SMOO =0,

*Recommended

FILTER =5,/




Isentropic Vortex Convection

Prescribed starting vortex
~ree stream Mach = 0.5
Periodic BC’s In flow direction
DTPHYS=0.01

1000 time steps per grid cycle

2nd order time with 10 Newton
subiterations 121x121 Grid

9/20/2010
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Flux Scheme Dissipation

o4

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
[terations
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Grid Convergence
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3D Vortex Preservation

1

Tangential Velocity
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3D Capsule Test Case

M_=4.02
v=1.246
Re=2.49x10°
a=16°

SST Turbulence
Model

Non-Shock Aligned Grid

45
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3D Capsule Symmetry Plane

HLLC Delta=1 HLLE++ Delta=5

46
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3D Capsule Windward Surface

HLLC Delta=1 HLLE++ Delta=5
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3D Capsule Symmetry Plane

9/20/2010
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Low Mach Number Preconditioning



Low Mach Number Preconditioning

« Eigenvalues of the inviscid fluxes (u,u+a,u-a)
become stiffas u— 0O

« Modify equation set with preconditioning matrix
I', to rescale eigenvalues

e Must also modify RHS fluxes to use scaled
eigenvalues

 Must use dual time step for time accurate
simulations

P aq, L9, OE aF aG

o | ot ox 8y oz

=0
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Eigenvalues

Navier-Stokes: Smith-Weiss Preconditioned:
B U ] IBmin :3Mrzef
) B=MAX[MIN(M21) 8., ]
— U 7]
A=| U U
U+C A= 2
. 0.50 (8 +1) (080 (81" + 5c*)
R 0.50(8+1)++/(0.50(8-1) + pc?)
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NACA 0012

+ Re,=1.0x107, a=0°

| o recoln itionin
® R H S — 5 Preconditioning
- 0.011

« FSO=3.0 001 \

CD

e ILHS =4

o Default BIMIN for

dreconditioned
0.006

resu ItS 0 0.1 0.2 0.3 0.4 05

Mach Number
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Flux Schemes Relative Timings*

2"d and 3 Order Methods

Central Yee AUSM Roe HLLC HLLE++
IRHS=0 | IRHS=2 | IRHS=3 | IRHS=4 | IRHS=5 | IRHS=6
1.00 1.68 1.91 1.38 1.58 1.71

High Order Methods
Central | Central | Central | Central | WENO | WENOM
FSO=3 | FSO=4 | FSO=5 | FSO=6
1.04 1.06 1.15 1.19 2.66 3.63

*Sensitive to processor choice




RHS Hints

Default explicit smoothing (DIS4=0.04) is high for central

algorithm for stability — accuracy can often be improved by

reducing DIS4. Recommended range is 0.005=DI154<0.04.

HLLE++ is the best choice for high speed flows with non-grid

aligned grids.

DELTA can normally be set to 1.0 (default = no fix) for upwind

algorithms. If help is needed, try setting DELTA ~ 2-10 for

supersonic and hypersonic flows.

Preconditioning can improve accuracy of the code for low

speed applications (M<0.25). Preconditioning destroys time

accuracy — must use dual time stepping for time accurate

applications. Sensitive to choice of BIMIN.

Riemann solvers are happy to have shock in the first cell off

the wall. Two approaches to push off shock:

a.) Run central difference with grid sequencing for a few
steps and then switch to upwind.

b.) Start solution with transonic Mach and increase free
stream Mach to desired value.

9/20/2010
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Viscous Fluxes



Viscous Terms

Option to include selected thin layer terms

Option to include only the cross terms for
selected thin layer terms

Option to include all viscous terms
(VISC=.TRUE.)

Option to select wall functions (automatic)

&VISINP
VISC = . TRUE., WALLFUN = .TRUE,,

/




Implicit Solvers



Implicit Solvers

ADI block tridiagonal solver (Beam & Warming)

— Central difference inviscid flux jacobians + 2" order
smoothing (ILHS=0)

— Steger-Warming inviscid upwind flux jacobians
(ILHS=5)

F3D solver (ILHS=1)

ADI Pulliam-Chaussee pentadiagonal solver

(ILHS=2)

— Central difference + 2nd9/4th order smoothing

— Preconditioned

LU-SGS solver (ILHS=3)

D3ADI diagonalized solver (ILHS=4)
— Preconditioned

NXAIR unfactored SSOR solver (ILHS=6,7)
— Preconditioned



Implicit Solvers
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Axisymmetric Bump Convergence

le-03

le-06

le-O7 |

Residual

le-08 |

1e-09

13—10 | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000
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ILHS

IRHS

Time to
Converge
(sec.)
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10.0
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33.4
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Solver Relative Timings*

B&W C| F3D Diag. | LU-SGS | D3ADI | B&W U | SSOR SSOR
ILHS=0 | ILHS=1 | ILHS=2 | ILHS=3 | ILHS=4 | ILHS=5 | ILHS=6 | ILHS=7
3.94 5.31 1.27 1.00 3.41 4.08 9.38 9.85

9/20/2010

*Sensitive to processor and grid size

*51x51x51 Grid

*Full Viscous Terms
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Subiterations



Subiteration Strategies

At

| +——

1+ 6

(6.A+8 B+5.C)|AqmH™ =

[l

n+l,m  n
()

0
1+ 6

__Aqn_l_iRHSml,m

/

Subiteration

update of g

n = iteration counter

m = subiteration counter

Newton Method:

At = Constant

1+ \
\

Recalculate RHS each
subiteration with latest g

Dual Time Stepping:

eUse local At

Locally converge inner
iteration (m)
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Subiteration NAMELIST Input
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Laminar Cylinder

« M. =0.2, Re, =150

e DTPHYS =0.02
(9.123x10 sec.)

— 272 time steps per lift cycle

— 136 time steps per drag
cycle

e 5t order WENO inviscid
fluxes

e Upwind Tridiagonal
Solver

e 401x201 grid
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Laminar Cylinder
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Convergence Acceleration



Grid Sequencing

Get an improved initial solution quickly on coarser grids
Works best for grids with 2™n +1 points

— m = number of levels

— Ngoarse = NUMber of points in coarse grid

Not all grids will sequence

— Too few points in fine grid

— Highly skewed fine grid

Overset updates on fine grid only

Can jump over holes on coarser grids

coarse

Fine Grid

] ] ] (] ] (] (] ] Medium Grid

L[]
]
L

L] L] Coarse Grid

9/20/2010 68



Multigrid

Construct solution at each time step from solutions on coarse and

fine grid levels
Currently use a “V” multigrid cycle
Quickly dissipate low frequency error

Transport turbulence models and species equations are not solved

with multigrid
Works best for grids with 2™n

— m = number of levels
Neoarse = NUMDber of points in coarse grid
Not all grids will sequence
— Too few points in fine grid
— Highly skewed fine grid
Can jump over holes on coarser grids
Overset updates on fine grid only

+1 points

coarse

A A HHHHHH]
[ ] ] ] I ] ] ] ]
[ ] L] ] ]
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Fine Grid

Medium Grid
Coarse Grid
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Convergence Acceleration
NAMELIST Input
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Rasidual

Residual

le-05

le-06 |

Axisymmetric Bump Convergence

" LHS=2+Seq MG
TLHS=2+Seq.
LHS=2

le-07 |
1le-08 |
1le-09 |
1e-10 1 1 1 I I
0 200 400 600 800 1000 1200 1400
Iterations
le —05 F T T
E ILHS=6+Seq.+MG
ILHS=6+5eq.
ILHS=6
le-06 |
1le-07 F
le-08 F
18—09 1 1 | 1
0 100 200 300 400 500
Iterations
9/20/2010

ILHS Time to
Converge
(sec.)
2* 26.3
2 +Seq. 20.5
2+Seq.+MG 22.8

6**

51.3

6+Seq.

37.4

6+Seq.+MG

52.8

* Local time step, IRHS=0
** 3 Newtons, global time step, IRHS=5
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LHS Hints

Recommended values for default diagonalized solver
(ILHS=2) when used with upwind algorithms (IRHS=3,4,5):
IDISS=2, SMOO0=0.0, DIS2=10.0, DIS4=0.1

Recommend use of ILHS=2 or 4 (fastest) or ILHS=6 (most
stable)

Use local time stepping and diagonalized solvers (ILHS=2,4)
for low speed preconditioning. Use dual time stepping for
time accurate solutions.

Use local time stepping and dual time stepping with
diagonalized solvers. Recommended time step ITIME=1,
DT=0.1, CFLMIN=10.

SSOR solver (ILHS=6) often does not need local time
stepping. Best when used with Newton subiteration and
second order time (FSONWT=2.0, NITNWT=3, DTPHYS=1.0)
Use grid sequencing (FMG=.TRUE., NGLVL=3,
FMGCYC=150,150) when possible to accelerate solution
convergence.

DT nondimensionalized by a... DTPHYS nondimensionalized
by V... (DTPHYS = M_*DT)

9/20/2010
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Boundary Conditions



Boundary Condition Inputs

e Select BC type with IBTYP

o Specify direction with IBDIR
— 1 for +J, 2 for +K, 3 for +L
— -1 for -J, -2 for —K, -3 for -L

o Specify region with JBCS, JBCE, KBCS, KBCE,
LBCS, LBCE

— -1 for last point
— -n for nend-n+1

« BCPAR1, BCPAR2 for BC specific values

 All boundaries must have a BC or be interpolated — if not
the BC checker will stop the code
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Boundary Condition Hints

« Walls (IBTYP=1-8)
— Pressure extrapolation more stable and less sensitive to non-
normal grid lines
— Momentum equation more accurate (requires grid lines to be
near normal to surface)
e Symmetry planes
— IBTYP=11-13 requires reflection plane (implicit)
— IBTYP=17 does not require reflection plane (explicit slip wall)
e Polar axis (IBTYP=14-16) f,=f;+%2a(f;-f,)
— a=1 (default) is 1st order extrapolation (more accurate, less
stable)
— a=0 is Oth order extrapolation (less accurate, more stable)
— o set by BCPAR1
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Boundary Condition Hints (Cont.)

IBTYP=21-2D -3 planesz1linY
IBTYP=22 — Axi In Y, rotate about X +1°

IBTYP=41 — Nozzle inflow
« BCPAR1=p, /P,
« BCPAR2=T,/T
IBTYP=141 — Uniform nozzle inflow

« BCPAR1=p /P,
« BCPAR2=T /T,

IBTYP=47 — Riemann outflow with free stream for
Incoming information

IBTYP=51-59 C-grid and fold-over bcs
» Be careful with topology
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Boundary Condition Input
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Species Equations



Species Transport Equations

9/20/2010

opt; , opUC | opVe | opWe, _ 0 ﬁ/‘ £ j(§f+§y2+§f)aci}+

ot o on o, o0& oy 05

(jn: il (AR nz)f;j?} ;{(ggj@sww;ﬁ)g‘;}

655: Ll (éxnx+5yny+§zm)gf7_ ;{[“ = ij(&xgﬁgy;ﬁ@éz)g?}
8877: ;‘L+C/: (gxnx+§yny+§znz)gzg +£7M;‘L+ij( St g, +mé“)2§i}+
;:[C‘T‘L+;‘; (&<, +8,0y + +&EL) J aivﬂci+i)(mé +1,8, HM;)Zﬂ

Cc; = Species Mass Fraction
o, = Laminar Schmidt Number

or = Turbulent Schmidt Number
79



Species Transport Equations

For each species c;:
c,—¢C, =R

Cp 2 3 4
E:aoJralT +a,l “+a, T " +a,l

Mass-Averaged Properties:

ngas ngas ngas
1= Zci Rmix - Zci Ri Comix = ZCiCpi
i=1 i=1 i=1

ngas C_ .
. Y pmix
Cvmix - Zcicvi 7/mix _
i=1

Cvmix
T _ ) mix -1 a €

T= i
y. T R . C
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Species Solution Options

« Differencing of species convection terms:

— Central difference (IUPC=0 — Requires DIS2C and
DIS4C)

— Upwind difference (IUPC=1)
— HLLC upwind difference (IUPC=2)
« Spatial order for convection terms:
— 2 for central
— 1-3 for upwind
— 1-5 for HLLC
 LHS options:
— ADI (ITLHIC = 1)
— SSOR (ITLHIC > 1)

9/20/2010
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Constant y, 1 Species

No species equation solved, so
don’t need &SCEINP
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Variable y, 1 Species

9/20/2010

No species equation solved, so
don’t need &SCEINP
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Variable vy, 2 Species

No species equation solved, so
don’t need &SCEINP
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Variable vy, 22 Species

9/20/2010




H2 and HE Sonic Jets into N2



Species Hints

Recommend the HLLC flux with the SSOR solver (ITLHIC =
10, IUPC=2,FSOC=3)

Variable y currently broken — pressure calculations inside
code are not correct. Constant y OK.

Free stream molecular weights and y calculated based on
NAMELIST inputs SCINF and SMW. SMW may be ratio or
actual molecular weight. GAMINF is ignored.

Code initializes species to SCINF. Must modify initial g file or
use specified input BC (BC 45) to get species into desired
locations in grid.

Species concentration calculated based on local total
enthalpy when using IGAM=2,

Most post-processors are constant y. Use post-processing
tool vgplot to get pressure, temperature, Mach number,
enthalpy, vy, and species mass fraction (c;) for plotting.

9/20/2010
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Turbulence Models



9/20/2010

Turbulence Models

Baldwin-Lomax (with wake model) (NQT=0)
Baldwin-Barth 1 equation transport model (NQT=100)
Spalart-Allmaras 1 equation transport model with trip line
specification (NQT=101)

Spalart-Allmaras 1 equation transport model (NQT=102)
SA-DES hybrid RANS/LES (NQT=103)

k- (1988) 2 equation transport model

— DDADI LHS(NQT=202)

— SSOR LHS (NQT=203)
SST with compressibility correction 2 equation transport model
— DDADI LHS (NQT=204)

— SSOR LHS (NOT=205)

Hybrid RANS/LES (SA and SST)

— DES (IDES=1)

— DDES (IDES=2)

— MS (IDES=3)

Rotational and curvature corrections (SA and SST)

— SARC and SSTRC (IRC=1)
— ASARC and ASSTRC (IRC=2)

SST-MS hybrid RANS/LES (NQT=207)
Wall functions for BB, SA, k-o, and SST transport models
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Wall Distance Calculations

« NAMELIST $GLOBAL parameters WALLDIST and
NWALL used to control how and when wall distance Is
calculated

« WALLDIST options:

— WALLDIST =0 — Read precomputed wall distance from file
walldist.dat (PLOT3D function file format)

— WALLDIST = +/-1 — Simple computation of wall distance (only
uses walls contained within the grid, ignores iblank)

— WALLDIST = +/-2 — Global wall distance computation
— If WALLDIST is negative, write wall distance file walldist.dat
« NWALL — Recompute wall distance every NWALL
steps
— Currently ignored

— Global wall distance currently computed on startup and after
grid adaptation
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A

Baldwin Lomax - Wallls

Sub'ayer BUﬁ:er Log Wake
Layer Layer /
/ o
Log(y*)

F(y) = y({l— exp(
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.

A

+

(/ut )inner = IOLTZn ‘Q‘

(lut )outer = 10 KCcp |:Wake |:kleb

Foen (V) =

6
1+ 5.5[—Ck'eby]

-1

ymax

|:wake — min {ymax |:max J ka ymaxU §iff / |:max }

—  max
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Baldwin Lomax — Shear Layers

1, = PRC F e Fiaes

cp’ wake
F
y — max

F(y)=Yy/
6\ L F
F. =|1+55C Y Yot us
Klebh = . Kleb F —_df
[ udif j wake ‘Q‘

‘Q‘max
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Baldwin Lomax - Axi Bump

-0.2 0 0.2 04 0.6 0.8 1 1.2

o UJint

X/c U/Uinf
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Baldwin Lomax - Nozzle
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Viscous Regions

e Used with Baldwin-Lomax to define where
to apply the model

e Used with transport modes to specify
boundary layer transition location

e Usage similar to boundary condition
specification

Turbulent Region Types (ITTYP)

Type Description
1 Baldwin-Lomax boundary layer model
11 Baldwin-Lomax shear layer model

102 1- or 2-equation laminar region (zero production)
103 Spalart-Allmaras boundary layer trip line
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Baldwin Lomax Viscous Region
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Baldwin-Lomax Application Hints

o &

The Baldwin-Lomax model requires that the F function be well
defined. This normally requires that at least three points be
located within the sublayer (y*<10).

The F function should be determined on lines normal to the flow
direction.

The first point off the wall should be located about y*<5 for
pressure distributions, y*<2 to obtain reasonable skin friction
values, and y*<0.5 for heat transfer.

The grid stretching normal to the wall should not exceed 1.3.
Improved heat transfer results can be obtained by using a
constant spacing for the first three cells off the wall.

In order to reduce the probability of finding a second peak well
off the wall, it is usually good to limit the number of points over
which the F function is calculated.

Care should be taken not to divide viscous regions such as
boundary layers when dividing the computational domain for
blocked or chimera applications since the entire velocity profile

Is required to properly define the F ., and U quantities.

9/20/2010
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Spalart-Allmaras One-Equation Model

Advection\ /Diﬁusion
oV 517_1 — ~ ~\2
FRerak ~{V-(r+ 7V )+ Cyo (V7T

- v
P(v)=Cb1(8+K2d2 fvzj
~ N\ 2
D(F)=C. f | L
)=Cutl

v, =vi,
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Effect of Initial Wall Spacing
Axli Bump - SA Model

9/20/2010

-0.5
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Effect of Grid Stretching Ratio
Axli Bump - SA Model
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Effect of Initial Wall Spacing on
Nozzle Heat Transfer - SA
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Effect of Grid Stretching on
Nozzle Heat Transfer - SA
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Spalart-Allmaras Application Hints

~N o

The first point off the wall should be located about y*=1to
obtain reasonable skin friction values and about y*=0.5 for
heat transfer.

The grid stretching normal to the wall should not exceed
1.3.

The eddy viscosity should be limited so that it will not run
away in some complex applications. Generally a limit of
v/v=200,000 is acceptable.

Care should be taken not to divide viscous regions such as
boundary layers when dividing the computational domain
for blocked or overset applications since the model
requires the distance from the nearest wall.

This model tends to smear out three-dimensional vortical
flows (rotation and curvature corrections can help).

The model can overdamp some unsteady flows.

The model contains no corrections for compressibility and
will overpredict the growth rate of high speed shear layers.

9/20/2010
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Two-Equation Model Variants

e k-¢
— Require wall-damping terms
— Good in shear layers
— Lots of corrections available (compressibility, roughness, etc.)
— Not as good near walls
e Wilcox k-w (ami
— Additionat cross-diffusion term (w;—j%‘?a%k
— Good near walls A
— Pretty good in adverse pressure gradients
— Sensitive to far field value of w

 Mentor's Shear Stress Transport (SST)

— Blended model with Bradshaw’s shear stress relationship in boundary
layer (improves performance in adverse pressure gradients)

— k-o near wall
— k-gaway from wall
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Effect of Initial Wall Spacing
Axi Bump - SST Model

X/c
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Effect of Grid Stretching Ratio
Axli Bump - SST Model
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Effect of Initial Wall Spacing on
Nozzle Heat Transfer - SST

9/20/2010 108



Effect of Grid Stretching on
Nozzle Heat Transfer - SST

NnrCNnn
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Sarkar Compressibility Correction
SST Model

opk opU.k 0O Ly | OK i an
n — + +p B —pleHed)Hp'd
ot o ox|\“ oy Jax | P ple {ed) P

_ 2
s =aMl¢g

p"d"=-a,pP M t2 + a3 peM t2

al :1-0;a2 — 0.4,053 — 02 Mt = &

IRT
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Compressibility Corrections
Supersonic Jet (M=2.22)

Centerline X/R=05
X/R=50 X/R=100
0! ' ! ! L ! e co— 0
0 1 2 3 4 5 B 7 2] 0 2 4 B 8 10 12 14
R/Bnoz R/Bnoz
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2-Equation Transport Model Application Hints

o O

The first point off the wall should be located about y+=1 to
obtain reasonable skin friction values and about y+=0.5 for heat
transfer,

The grid stretching normal to the wall should not exceed 1.3. A
constant spacing should be used for the first three cells off the
wall for heat transfer calculations.

The eddy viscosity should be limited so that it will not run away
in some complex applications. Generally a limit of v/v=200,000
IS acceptable.

Care should be taken not to divide viscous regions such as
boundary layers when dividing the computational domain for
blocked or overset applications since the model requires the
distance from the nearest wall.

This model can overdamp some unsteady flows.
Compressibility corrections should be included for high-speed
shear layer flows.

9/20/2010
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Rotation and Curvature Corrections



Why Do We Need R&C Corrections?

e SA and SST turbulence models are based on
Isotropic turbulence assumption

— Curvature is a non-isotropic effect

 SA model uses vorticity in the production term
— Vorticity reaches a local maximum in vortex core

— Eddy viscosity also reaches a local maximum in the
vortex core and overdamps the vortex core

« SST uses strain in the production term
— Strain reaches a local minimum In a vortex core



Vorticity and Strain Magnitude
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Wall Functions



What are wall functions?

Solid wall boundary conditions based on curve
fits from some point inside the boundary layer to
the wall requiring functional expressions for:

— Velocity, pressure, and temperature

— Turbulence transport variables

— Wall shear stress and heat transfer

— Species
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Why use wall functions?

* Improve solution turnaround by reducing the
number of points in a solution

o Simplify grid generation
* Improve numerical stability

* Improve wall approximation with multigrid or grid
seguencing methods
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Profiles for determining 1, and q,,

Spalding’s equation with the outer velocity profile of

White and Christoph

(ku}  (ku')
Bl 14Ut + +

+ + +
Y =U + Yunie — €

6

Yanite = eXp{%{Sinl[ 2Fu(;— 'Bj - (0}} exp(—« B)

Crocco-Busemann temperature profile

T =TW{1+ Au’ —r(u+)2]
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Effect of Initial Spacing on Ames Axi Bump — SST Model with
Wall Functions

-1 05 0 05 1 15 2 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
X/c U/Uinf
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Effect of Initial Grid Spacing on
Nozzle Heat Transfer — SST with Wall Functions

2NNN
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Wall Function Application Hints

N

Wall functions are available for all the transport
turbulence models.

The initial wall spacing should be about y+=50.

The automatic feature allows you to use wall functions in
selected areas of a grid since it is controlled by wall
spacing.

The force and moment coefficients generated by
OVERFLOW 2 include the wall functions for calculating
skin friction.

The wall functions must be included to accurately post-
process skin friction or heat transfer.

9/20/2010
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Hybrid RANS/LES Unsteady
Turbulence Models



What are Hybrid RANS/LES Models?

e Similarto LES
— Use a filtered RANS model as an LES subgrid model
— Require low numerical dissipation in NS flux scheme
— Only for unsteady applications

e (Goalisto get RANS in boundary layer, LES
everywhere else

« Applicable to flows with large-scale turbulent
structures away from the walls
— Vortex shedding
— Weapons bays
— Shear layers

e Solutions are grid and time step dependent
— Must use statistical parameters to judge convergence
— Work best for nearly isotropic grids
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Turbulence Model Partitioning of the

Energy Spectrum
t RANS
Metaphysics . " Phvsics
Hybrid RANS/LES y
I* ”
> | LES
E) <
Q I
-
m
I={
—
— DNS

Ln(Wave number)
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Data Sample Windows
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Spectral Variation

Sound Pressure Level (db)
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Statistics Summary

Average OASPL Peak SPL Frequency of

Pressure (db) (db) Peak SPL (hz)
Window 1 1.02447 171 171 48.577
Window 2 1.02412 171 171 48.577
Window 3 1.01888 171 170 48.577
Window 4 1.02000 171 171 48.577
Average 1.02187 171 171 48.577
Max Error 0.29% 0.22% 0.747% 0.0%




Detached Eddy Simulation (DES)
And Multiscale (MS)

 SA — Modify destruction term by replacing distance
from wall with local grid scale

— Increases turbulent destruction as grid is refined
— Becomes a Smagorinsky model in LES limit
— Does not include a turbulent length scale

e SST — Modify destruction term in k equation to be a
function of the ratio of the turbulent length scale
(k32/¢) to local grid scale

— Adds additional turbulent destruction to k equation
as grid is refined

« MS — Filters eddy viscosity as a function of the ratio
of the turbulent length scale (k32/¢) to local grid scale



Cp

Delayed Detached Eddy Simulation
(DDES)

« DES and MS models tended to transition prematurely
to LES in the boundary layer when grid becomes

refined

e (Can produce solutions that are neither RANS or LES

« DDES slows transition to LES in boundary layer
using functions of turbulent length scale to distance

from the wall

-1.5

SADDES
SA DES
SA

Data

1
0.8

SSTMSD
SSTMS
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WICS Bay Experiment

Geometry

—Rectangular bay 18"x4"x4”

—15” flat plate in front bay
*Test Conditions

—M=0.95

—Re=2.5x10°%/ft
eInstrument Locations

—K16-bay celling centerline 0.275” from back wall
—K18-bay back wall centerline 0.725” from opening
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WICS Bay Grid Systems

Grid Total Bay Grid Bay Grid | Bay Grid | Bay Grid
Points Dimensions AX o AY ax AZ
Fine 1.8x10° 121x61x61 0.31in. 0.1in. 0.1in.
Medium | 1.1x10° 71x41x41 0.6 in. 0.21in. 0.21in.
Coarse | 7.9x10° 61x31x31 0.75in. 0.3 in. 0.3in.
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Wall Spacing of y*=50 for all grids
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WICS Bay Centerline Grids

"" Medium

Coarse




WICS Bay Centerline

FINE Medium Coarse
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Time Step Study
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Time Averaged and Spectral Results
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Sound Pressure Level (db)
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Hybrid RANS/LES Application Hints

These models are for unsteady applications, and should not be
used with local time-stepping or with other non-time accurate
algorithms.

Turbulent flows are three dimensional, and hence these models
should be used only in 3D.

Because of the unsteady nature of these models, they may
require a large number of time-steps to obtain a statistically
stationary solution for analysis.

These models may be sensitive to the computational mesh
because the filter function is inversely proportional to the grid
spacing. A rule-of-thumb is that the ratio of the turbulent scale
to grid length scale should be greater than two in the region of
interest when using hybrid models.

As with all unsteady applications, care should be taken to be
sure the time step is small enough to temporally capture the
unsteady phenomena of interest.

9/20/2010
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Unsteady Flow Outputs



Time Averaged Flow Output
for Entire Grid System

Code will compute a running average of
the g variables and also p’?, u’?, v’2,
w’2,and p’?

Averaging begins when solution reaches
time step ISTART _QAVG

Results are written to file g.avg
g.avg file is overwritten each restart

$GLOBAL
NSTEPS = 12000, ISTART_QAVG = 2000,
$END




WICS Bay M=1.75

Instantaneous Mach Instantaneous Pressure
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Unsteady Flow Output for
Region
 IBTYPE = 201 will write the g values at

each iteration for a given region of the
flow to a file

* File name can be input using BCFILE
o Default name is BC 201.mesh.bc#

$BCINP
IBTYP =201, 201, 201,
IDIR = 1, 1, 1
JBCS = 1, 1, 1
JBCE = 1, -1, -1
KBCS= 1, 1, 1
KBCE= 1, 1, -1
LBCS = 1, 1, 1
LBCE = 1, 1, -1

$END
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Output Information for Moving Body Simulations

e |nput parameters in SGLOBAL

— NSAVE — grid system, flow solution, and 6-DOF restart information save
every NSAVE steps as x.step#, g.step#, sixdof.step#

— NFOMO - force and moment coefficients are written to fomoco.out
every NFOMO steps (automatically set to 1 for 6-DOF simulations)

e NAMELIST SSPLITM: write subsets of grid and solution every
nsteps (similar to CGT utilities SPLITMX, SPLITMQ)

— XFILE, QFILE, QAVGFILE — specify base names for grid, solution, and/or
Q-average data (if blank, don’t write); step# appended to base name

— NSTART, NSTOP - start/stop step numbers for writing output files (use
-1 for last)

— IPRECIS — output file precision (0 — default, 1 —single, 2 — double)

— 1G(subset#) — subset grid number; use IG()=-1 for cut of all off body
grids

— JS,JE,JI,KS,KE,KI,LS,LE,LI(subset#) — subset ranges and increments

— CUT(sunset#), VALUE(subset#) — off-body grid cut type (“x”, “y”, or “z”)
and corresponding x, y, or z value

— Can have multiple SSPLITM namelists for multiple files



Overset Considerations for RANS
Turbulence Models



Chimera Domain Decomposition
NACA 0012 Example

Coarse mesh \

AN
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Fine mesh



Chimera Domain Decomposition
NACA 0012 Example

Average Distance for Hole Boundary (chords)
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Chimera Domain Decomposition
Ames Axi Bump Example
WALLDIST =1

x/c
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Chimera Domain Decomposition
Ames Axi Bump Example
WALLDIST =1

Eddy Viscosity
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OVERSET Application Hints

B W

Holes should be cut as far from a body as possible. It
Is highly desirable to match the cell sizes in the
overlap region.

Point injected boundaries are preferable if possible
since they allow a conservative exchange of
Information between the computational domains.
Double fringe stencils are preferable.

Care should be taken to ensure that the turbulence
model has all the information it needs within its own
domain. Wall distances are required by many
turbulence models and the walls that affect a domain
should be included in the domain. For algebraic
models care should be taken not to split the grid such
that the profile from which the eddy viscosity is
derived is split.
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